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Single Alternating Group Explicit (SAGE) Method for Electro-
chemical Finite Difference Digital Simulation
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The four different schemes of Group Explicit Method
(GEM);: GER, GEL, SAGE and DAGE have been claimed
to be unstable when employed for electrochemical digital simu-
lations with large model diffusion coefficient Dy,;. However, in
this investigation, in spite of the conditional stability of GER
and GEL, the SAGE scheme, which is a combination of GEL
and GER, was found to be unconditionally stable when used
for simulations of electrochemical reaction-diffusions and had
a performance comparable with or even better than the Fast
Quasi Explicit Finite Difference Method (FQEFD) in some as-
pects. Corresponding differential equations of SAGE scheme
for digital simulations of various electrochemical mechanisms
with both uniform and exponentially expanded space units
were established. The effectiveness of the SAGE method was
further demonstrated by the simulations of an EC and a
catalytic mechanism with very large homogeneous rate con-
stants.
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Introduction

Electrochemical simulation has proved to be very
useful for both theoretical and experimental investigations
of complicated electrochemical process.!” Among the ex-
isting methods, finite difference technique is most fre-
quently used, and has experienced successful develop-
ments during the past decades. For the simulation of
electrochemical problems, classical explicit finite differ-
ence (EFD),® fast quasi explicit finite difference
(FQEFD ),° hopscotch,'® Saul’yev,!! Crank-Nicolson

(CN),™ and fast implicit finite difference (FIFD),"
methods have been developed. Incorporating an expand-
ed grid technique,'* these methods can deal with most of
electrochemical problems with different performances.

Although implicit methods have showed better sta-
bilities than the explicit ones, efforts in search of explic-
it simulation algorithms with satisfactory stability and ac-
curacy have never been ceased due to their attractive
simplicity’>!® in programming. In addition, paralleliza-
tion of the explicit simulation is usually much easier than
the implicit ones, which makes the explicit methods very
promising in simulations of very complicated mecha-
nisms . Nevertheless, the most serious problem for the
explicit methods exists in its conditional stability. This
makes the use of a model diffusion coefficient ( Dy) with
a value larger than 0.5 impossible, and leads to a diffi-
culty in simulating an electrochemical process coupled
with fast homogenous reactions. In addition, as pointed
out by Feldberg, such a difficulty also exists in the sim-
ulation of a system involving species with extremely dif-
ferent diffusion coefficients. In order to overcome these
difficulties, FQEFD and Hopscotch methods were devel-
oped.

Another member among the explicit methods, the
single alternating group explicit (SAGE) method,? also
has attractive Dy stability, as well as the mathematical
simplicity in solving numerically parabolic partial differ-
ential equations (PDEs) . Like other explicit methods, it
is easy for SAGE to realize parallel programming. Be-
sides, SAGE is also suitable for the numerical resolution

* E-mail; xqlin@ustc. edu.cn; Phone: + 86-551-3606646; Fax: + 86-551-3631760.
Received April 16, 2001; revised September 24, 2001; accepted November 2, 2001.
Project supported by Chinese Academy of Sciences (No. 9002kj951-A1-507) and the National Natural Sciences Foundation of China

(No. 20173054) .



Vol. 20 No. 3 2002

Chinese Journal of Chemistry 253

of two-dimensional problems as is the truth mathemati-
cally. Unfortunately, this method was claimed to be un-
stable for the simulation of a Cottrell process when Dy >
5.0.%

In the present work, difference equations with both
uniform and expanding space units were established for
the SAGE scheme when applied to the simulations of
various electrochemical problems. The stability and ac-
curacy of the SAGE difference scheme were demonstrated
by applying it to the simulations of some typical electro-
chemical mechanisms (some of them are usually thought
to be challenging for an explicit method) .

Theory

Saul’ yev difference algorithm

A pair of finite difference equations which are ex-
plicit and unconditionally stable were developed by Saul’
yev in 1964.2 One of them is called the Saul’yev -RL
equation and can be written as

C;- C = Dy(Ci_y - C - C + Cpy) (1)
It can be rearranged into

(1+ DM)C; - DMC;+1 = DyCioy + (1- DM)Ci
(2)

while the other is known as the Saul’yev-LR equation
and can be written in the following form:

—DyC;+ (1+ Dy)Ciyy
=(1- Dy Ciy1+ DuC;.s (3)

Using Eqs. (2), (3) to solve parabolic partial differen-
tial equations was first suggested by Larkin® and then
was applied in electrochemical digital simulation. Among
these applications, the Saul’ yev-RL method showed bet-
ter efficiency and higher precision than the Hopscotch
method,? and the < LR, RL> Saul’yev algorithm''
has also been found to have a simulation efficiency simi-
lar to the Crank-Nicolson method. In addition, both of
the above two methods need much lower programming ef-
fort.

Group explicit method

Another practical ways of using the Saul’ yev equa-
tions in a combined manmer were developed by Evans
and Abdullah.? The heart of this method is to apply the
Saul’ yev-RL and Saul’yev-LR equations to successive
pairs of two points along every line of the space-time
grid. Thus the concentration pairs can be easily solved
by combining Eqs. (2), (3). The resulted equations
are totally explicit which can be written as follows:

C: = A/A (4)

'

Ci+1 = Ai+l/A (5)

where A=r{ 1y — a2, A;j=rpa—rpb, {1 =
rub —rpa, with rp=rp=1+ Dy, rp=ry =
-Dy,a=DyCi_1+(1-Dy)C;and b=(1-Dy)-*
Cii1+ DuC;.,. Eqgs. (4), (5) can be used following
four different schemes: GER, GEL, SAGE and DAGE.
For the GER scheme, the Saul’ yev-RL equation is used
for the last point and Eqs. (4), (5) are then used for
all the remained points. Similarly, the Eqs. (4), (5)
are used for every space point in the GEL scheme except
for the first point for which the Saul’ yev-LR equation
should be used. As for the SAGE, the single alternating
group explicit method, the GER and GEL schemes are
used alternatively on successive time levels of the grid.
The DAGE is a double altenating group explicit
method, which means the GER scheme is used for the
first time level, and the GEL for the next two levels,
and again the GER for the next two time levels, and so
on. The first two are unstable for Dy > 1. However, the
last two algorithms are unconditionally stable for all posi-
tive values of Dy, as claimed by Evans and Abdullah.?
In spite of the attractive possibilities outlined by the au-
thors, the results’ show that the simulated results by
these schemes also suffered strong instabilities when
large Dy was employed. Obviously, this unexpected in-
stability is worthy of being investigated again in more de-
tail to explore the real reason that leads to such numeri-
cal oscillations. The simplest and very effective method
to evaluate the stability of a finite difference algorithm is
the simulation of a Cottrell experiment because the
abrupt change of the surface concentration , % which initi-
ates the diffusion, is usually a factor causing the numeri-

cal instability.
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Simulation of the Cottrell experiment by SAGE method

The following discussion is on the basis of the fol-
lowing electrode reaction;

Ox+e «<Red (E°, o, k) (6)

where E° is the formal electrode potential, « is the
transfer coefficient and k° is the standard heterogeneous
rate constant. They are the operational parameters in
Butler-Volmer rate expressions for the interfacial pro-

cess.
1. Uniform grid equations

For the uniform grid difference SAGE method, cal-
culations of the concentrations in the GER step are based
on Egs. (4), (5), except for the first two space grids
where two different equations must be used:

C; = N/A (7

Cy = A/A (8)

where A= 1% - 1h, A = 1% - 0, Ay =1
B~ r%a®, with 19 =1+ Dy, S =1+2Dy, =
- Dy, 1% = - 2Dy, a®=2DyCo+ (1-2Dy)C;
and b° = (1 - Dy) C, + DyC;. Calculation of the first
point in the GEL step follows the Saul’ yev-LR equation,
which can be rewritten as follows:

Cy = [Cy + Dy(Cy - Cy) +2DyCyl/(1 + 2Dy)
(9)

As for the last point in the GER step, we put it in pair
with an extra point with the bulk concentration. This
simplifies the programming a little and does not influence
the simulation accuracy because the added point is far
beyond the “diffusion layer”. In all the simulations, the
currents were calculated and stored for analysis at the
end of every GEL step. Possible cancellations of the

truncation errors after a cycle of GER and GEL steps
should improve the simulation accuracy further.?

2. Exponentially expanded grid equations

If the exponentially expanded space grid is em-
ployed for the simulation, Eqs. (4), (5) are still used
in the same form but with different parameters; ry; =1
+ Dli? rp=1+ Dli+1’ g = = D:’ = - Dli+1’ a
=DiCiy+ (1= D) G and b= (1-Diyy) Ciuy +
D;,,C;,,. Thus Eqs. (4), (5) can be used for the
calculations of all space points in the GER step following
the definitions of D; and D’; by Feldberg.*

In the GEL step of the SAGE scheme, the equation
used to calculate the concentration of the first point be-
comes

C1=[C+Di(Cy- C)) + DCol/(1+Dy)  (10)

Development of SAGE scheme for the simulation of the

cyclic voltammetric experiment
1. Quasi reversible reaction

The only difference in the simulation of this system
from the Cottrell simulation exists in the calculations for
the boundary points, Cp and C;, for both the reactant
and the product. These unique calculations are only nec-
essary in the GEL step of the SAGE simulation. For the
GER step, all the calculations are the same as described
above, bearing in mind that the surface concentration,
Co, is now not a constant any more (equal to zero for
the Cottrell process), but varies with time or potential
levels. To calculate the boundary concentrations in the
GEL step, the following four-variable linear algebra e-
quations which are the discrete forms of the flux balance
condition; the Butler-Volmer kinetic equation and the
Saul’ yev LR equations for the concentrations of the first
points of both the reactant and the product. These equa-
tions can be written into a matrices expression;

o~ Dan 14 Dy, 0 Caro Coxt + Dt (= oyt + Car2)
1+ kAt/ Dy 1Dx -1 kyAt/ D, \Ax Cont 0 (1)
0 0 ~ Dyt 1+ Dt || Codo| | Crat + Dret1(= Croayt + Crea2)
- D’om,l D’ox,l - D;ved,l D'red,l Cred,l 0
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where D;,,l and D"p,l(the subscript “p” represents “ox”
or “red”, corresponding to the reactant and product of
the electrode reaction) are the left and right dimension-
less diffusion coefficients, which were defined by Feld-
berg, ' of the species in the first space grid for an expo-
nentially expanded space grid model, k¢ and ki, are the
forward and backward heterogeneous rate constants de-
fined in the Butler-Volmer expression, At is the time
increment in the simulation and Ax is the thickness of
the first space element, the concentration variables
marked with the superscript “’” designate the concentra-
tions at the current time level of the simulation and con-
centration variables without superscript “’” represent the
Defining parameters: my =
=Dty mp=1+ Doy, my =1+ kiAt/ (Do, 1Ax),
my = — kpAt/(Dy 1 Ax), mp= — Diays my=1+

previous time level.

DIred,l’ my=-¢, mp=g, a’= Cox1 D:x,1( = Cox1
+ Cox2)s 8= Croayt + Dreg1( = Croa1 + Crea2) 5 Eq.
(11) can be written into En. (12) by appropriate matri-
ces transformations.

C:)x,O a® /mlu
Cox,1 _ [® = my Coy0)/may
Credy0 [8° - m3 Conyo — muCo11/may
C,red,l - My C,ox,O - m4ZC;)x,1 + C;ed,O
(12)
where a¥ = a® + mp %[ 1 - may my mu/(ma +

my)), my = my + [my + may my myu/(ms +
m34)] m12/[1 - Mm3y My mz;/( msz + m34):|, CO =

0 ,
- mpb®/(my+my), my = my + ma my my/

(mpz+my), mp= -1+ m34m42m23/(m33 + may),
M3 = — MyMy, My = — MMy, and my = ma3 +
ms4.

Eq. (12) is a four-variable linear algebra equa-
tions group and can be solved directly without much dif-
ficulty, resulting in the explicit expressions for all the

four coneentration variables at the boundary points.
2. First order irreversible EC mechanism

The first order irreversible EC mechanism couples
an electron transfer (Eq. 6) with an irreversible homo-
geneous first-order chemical reaction

ky
Red —>Prd (13)

The EFD algorithm is not satisfactory in simulating such
a process when the homogeneous rate constant k; is very
large, because the exiremely thin reaction layer needs
space units with very small thickness to describe it accu-
rately. This means the simulation will take very long
CPU time. The Dy stability of the SAGE method should
be advantageous in dealing with this problem. For the
programming, the equations used for this mechanism are
mostly the same as those for the quasi-reversible
scheme, only the definitions of ry; and ry in the corre-
sponding Egs. (4), (5) for the calculations of product
concentrations and ms4 in Eq. (12) for the calculations
of the boundary concentrations of both the reactant and
the product in the GEL step are different. The above
differences in calculating ryy, ry and my, are due to
the fact that not only the diffusion but also the coupled
chemical reaction (Eq. 13) alters the concentration of
“Red”. The influence of the coupled chemical reaction
on the change of the product concentration is reflected
by a term E,C;At in the following equation (corre-
sponding to Eq. 2).
C; - C = Dy(C;.1 - C; - C; + C;+1) - kC;At
(14)

Therefore, the Saul’ yev-RL and -LR equations for the
calculation of the concentration of the electrode reaction
product (Red) using an exponentially expanding grid al-
gorithm should be written as:

(1 + Diga,i + k1A8) Creq,; - Died,iCrod,iv1 = Died,iCred,ic1 + (1 - Drea,i) Crea,: (15)

— Do is1Crei + (1 # Diggivt + E1A) Cregyivt = (1 = Do int) Creayint + DiedisiCrea iz (16)

These above two equations show that the expressions of

r1; and ry, now used for the calculations of the product
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concentrations of the non-boundary points are; rj; =1
+ Doy i+ k1AL, rp =1+ Doy ;41 + kyAt. The cal-
culation of the boundary concentrations in the GEL step
is based on three relationships: the flux balance equa-
tion, the Butler-Volmer equation, and the Saul’ yev LR
equations for the first grid point. Among these, only the
one corresponding to the concentration of Red is differ-
ent from the quasi-reversible case, and this equation has
the following form;

— Drea1 Creao + (1 4+ Diggy + k1A1) Creg
= (1 = Dieay1) Creay + Dig1Crog  (17)

It means that my = 1 + Dy + kAt should be used
instead of my =1+ D;ed,l for the boundary concentra-
tion calculations.

After the replacements of r;, ry and ma,, calcu-
lation of the concentrations at the boundary points in the
GEL step and the product concentration in both the GEL
and the GER step could be conducted in a similar way
to that for the quasi-reversible scheme. In addition, the
calculations for the concentrations of the reactant at non-
boundary points do not need to be changed and are the
same as those in the quasi-reversible scheme.

3. Irreversible first order catalysis mechanism

For the above EC mechanism, only those parame-
ters corresponding to the product of the electrode reac-

tion need to be modified. However, in the case of the
simulation of the irreversible catalysis reaction,

kc
Red —>Ox (18)

parameters corresponding to calculations of the concen-
trations for both the reactant and the product of the elec-
trode reaction must be modified. For the product, the
definitions of ry; and r; are modified in the same way
as for the EC mechanism with the homogeneous kinetics
constant k; replaced by k.. However, for the reactant,
the corresponding ry; and ry are kept unchanged with
the expressions of parameters a® and 5° changed into:
0°= D, iCox,i-1 + (1= Dy ;) Cor i + ko Creq, ;A and
b = (1 - D:)x,i+1) Cox,iv1 + D:;x,i+1 Cox,iv2 +
kCreq,iv10t. The values of Crog; and Cieg ;4 are
known because the concentrations of the product of the

heterogeneous reaction at every point are calculated first-
ly. Other differences exist in the parameters of Eq.
(12), which is used to calculate the concentrations of
the reactant and the product at the boundary points. For
the catalysis system, the following modifications are
necessary on the basis of simple mathematical deduc-
tions. First the expression of ms, becomes: my =1 +
D;ed,l + k,At, then my;, my and a° are changed in-
to: my = = Doy + koAtmymyy/(ma + may), my,
=1+ Dy + kAtmg my/(my; + may) and a® =
Coxt + Doyt (= Copt + Corp) + b AD%/(may +
my,), thus the equations for the boundary concentra-
tions of the catalytic mechanism also have the form of
Eq. (11) and can be solved analogously resulting in a
solution with the form described by Eq. (12).

Simulation results and discussion

All the programs were written in Turbo C 2.0 and
executed in double precision on an IBM-PC compatible
microcomputer with a Pentium 120 MHz processor. The
programs are available from the authors upon request.

Simulation of the Cottrell problem

The accuracy of simulated current can be estimated
from the ratio R(j) between the simulated current and
the analytical value as a function of the iteration num-

ber.’
R(j) = filx(j + ©)/Dy]?At/Ax  (19)

where j is the iteration number, f, is the simulated flux
and 7 is an arbitrary parameter with a value chosen to
give best fitting with the analytical results. As shown in
Table 1, the simulation was stable even with very large
Dy, this confirms the unconditional stability of the
SAGE method. Bearing in mind that the real iteration
number is 2; for two steps (GER and then GEL) are in-
volved in “one iteration” . The SAGE simulation was ac-
curate enough with Dy < 1.0. Slower convergence ap-
peared for Dy > 10. This could be attributed to the so-
called propagational inadequacy® due to the lower propa-
gation speed of computation relative to diffusion for a uni-
form grid algorithm. The convergence can be accelerated
by using an exponentially expanded space grid tech-
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nique.? In order to prove this prediction, an exponen-
tially expanded space grid was also used for the simula-
tion of a Cottrell process and the results are tabulated in
Table 2. As shown in Table 2, the accuracy was not im-
proved but slightly decreased when the expanded grid
was employed. In addition, the stability became worse
for the expanded grid SAGE method. Strong computation
oscillations appeared with Dy > 100. As the fully im-
plicit calculation can always enhance the stability of an
algorithm, the implicit calculation of the boundary con-
centration ( C;), which was calculated following the
Saul’ yev-RL scheme for the uniform grid simulation in

the GER 'step, was tried and found to be able to damp
the oscillations and thus improve the accuracy efficiently
(shown in Table 3). By comparison with the simulated
results of the uniform grid simulation employing the same
implicit calculation of C 1 (shown in Table 4), a faster
convergence was observed for the expanded grid tech-
nique. Thus we conclude that the instability in the ex-
panded grid SAGE simulation was caused by the abrupt
change of the interfacial concentration, which led to a
negative value of the calculated boundary concentration
at the first iteration and thus made the calculation unsta-

ble.

Table 1 R(j) values for a simulation of the Cottrell experiment obtained with the uniform grid SAGE method®

Dy

j 0.4 1 5 10 100 4000

10 1.001431 0.979650 0.890498 0.757906 0.091502 0.000437
20 1.000370 0.989787 0.947917 0.892926 0.215954 0.001236
30 1.000179 0.993183 0.965725 0.931334 0.333397 0.002262
40 1.000112 0.994884 0.974449 0.949313 0.435205 0.003468
50 1.000080 0.995906 0.979631 0.959802 0.520332 0.004824
60 1.000062 0.996588 0.983065 0.966687 0.590292 0.006312
70 1.000051 0.997075 0.985507 0.971556 0.647339 0.007916
80 1.000044 0.997441 0.987334 0.975182 0.693753 0.009626
90 1.000039 0.997726 0.988752 0.977987 0.731571 0.011430
100 1.000036 0.997953 0.989884 0.980223 0.762508 0.013323

¢ Optimal value of T is —0.16 for this case.

Table 2 R(j) values for a simulation of the Cottrell experiment obtained with the expanded grid SAGE method

Dy

i 0.4 1 5 10 100 300

10 1.000507 0.979723 0.860240 0.739608 - 11.527455 - 19.429897
20 1.000092 0.988589 0.931161 0.859551 0.989325 - 15.444766
30 1.000147 0.992855 0.953610 0.905968 - 0.068550 2.164761
40 0.999343 0.994276 0.965414 0.929255 0.285547 -0.351084
50 0.999433 0.995076 0.972390 0.943588 0.432571 -1.231617
60 0.999871 0.995914 0.976825 0.953144 0.522214 —0.424053
70 1.000167 0.996692 0.979936 0.959836 0.590858 -0.179712
80 1.000210 0.997275 0.982333 0.964747 0.642287 -0.079577
90 1.000082 0.997638 0.984292 0.968528 0.682643 0.046496
100 0.999896 0.997832 0.985930 0.971569 0.714851 0.146598

2 Optimal value of 7 is 0.0 for this case.
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Table 3 R(j) values for a simulation of the Cottrell experiment obtained with the expanded grid SAGE method with the implicitly
calculated boundary concentration C; at the GER step at every time level®

. Dy
J 0.4 1 5 10 100 1000 100000
10 1.000900 0.996755 0.997612 1.000879 0.989522 1.904237 0.404522
20 1.000314 0.997450 0.998075 0.998388 1.003620 1.136939 1.014347
30 1.000508 0.998850 0.997967 0.998608 0.998983 0.814406 1.560731
40 0.999639 0.998863 0.998502 0.998447 0.999061 0.991041 1.918514
5 0.999639 0.998736 0.998922 0.998671 0.999333 1.020820 2.064326
60 1.000037 0.998943 0.998993 0.999013 0.999358 0.997406 2.020298
70 1.000321 0.999284 0.998936 0.999215 0.999239 0.996143 1.840130
80 1.000360 0.999552 0.998926 0.999257 0.999148 0.999203 1.585531
90 1.000227 0.999676 0.999009 0.999215 0.999152 0.999466 1.313810
100 1.000030 0.999676 0.999155 0.999168 0.999235 0.999396 1.069084

¢ Optimal value of = is — 0.7 for this case.

Table 4 R(j) values for a simulation of the Cottrell experiment obtained with the uniform grid SAGE method with the implicitly
calculated boundary concentrations of C; at.the GER step at every time level®

. Dy

J 0.4 1 5 10 100 1000
10 1.008411 1.001367 1.026174 1.071629 0.887692 0.334799
20 1.004152 1.001011 1.012194 1.032600 1.080953 0.472909
30 1.002753 1.000733 1.007910 1.020117 1.146717 0.571448
40 1.002060 1.000570 1.005853 1.014559 1.163185 0.649187
50 1.001646 1.000466 1.004645 1.011416 1.158957 0.713368
60 1.001372 1.000393 1.003850 1.009393 1.146529 0.767751
70 1.001176 1.000341 1.003287 1.007980 1.131656 0.814609
80 1.001030 1.000300 1.002868 1.006936 1.116959 0.855450
9% 1.000917 1.000269 1.002544 1.006135 1.103541 0.891343
100 1.000826 1.000243 1.002286 1.005499 1.091765 0.923083

¢ Optimal value of T is — 0.7 for this case.
Simulation of the cyclic voltammetric experiment
1. Reversible electron transfer reaction ( Nernst process)

Reversible reaction can be considered as a limiting
case of the quasi reversible process when k°/( DFy/
RT)?—> e . This case was chosen to demonstrate the
stability and accuracy of the SAGE method. The simu-
lated results are given in Table 5. Similar to the FQEFD
method, the SAGE method was stable even for very
large Dy . For the results in Table 5, the following con-
dition,” the same as that proposed empirically by Feld-
berg for his FQEFD method, must be met in order to get
accurate simulation results;

Dot < 2 x10°/ | wA: |3 (20)

where vA¢ is the potential increment in each iteration,
and D,y is the larger between D, y and D,g . E-
quilibrium initial concentrations were not used and no
obvious oscillations were observed in our simulations
with an initial potential set to be (Ey+0.2 V). As
seen from Table 5, the results for the simulations with 3
=0.5 agree well with those computed by Nicholson and
Shain.? In addition, simulations using 8 =1 also pro-
duced good results with only slight deviations from those
obtained with 3=0.5. This means 8= 1 can be used for
the SAGE simulation and thus shortens the computation
time considerably. Since the fully implicit calculations
for the boundary concentrations, as done for the Cottrell
simulation, were not used for all the simulations here
and no obvious oscillations were observed even for very



Vol. 20 No. 3 2002

Chinese Journal of Chemistry

259

large Dy, we conclude again that the instability for the
expanded grid simulation of the Cottrell process is
caused by the strong discontinuity of boundary concen-
trations and this discontinuity is minimized for voltam-
metric simulations.

2. Irreversible electron transfer reaction

mensionless heterogeneous rate constant A = 104 (A =
k%/(DFu/RT)?) and the electron transfer coefficient
a=0.5. The results are shown in Table 6 and agree
well with the values of Nicholson and Shain.® Following
the constraint of Eq. (20), the Dy as large as 1012
could be used and presented excellent results. Similar-
ly, accurate results were also gained even with a larger
value of B=1. This saved the computation time signifi-

Simulated results for an imreversible process were
also obtained by the SAGE method by assuming the di-

cantly.

Table 5§ Simulated curre functions for a reversible cyclic voltammogram®

w)
lvAel (V) 10° 104 10°% 10 107
(E-E)/V NS Dy 1 16° 106 10° 102
B 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1
0.120 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.100 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
0.080 0.042 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041
0.060 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084
0.040 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160
0.020 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
0 0.380 0.379 0.379 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380
-0.0285 0.4463 0.4467 0.4469 0.4476 0.4466 0.4476 0.4478 0.4476 0.4465 0.4476 0.4473
-0.020 0.441 0.441 0.441 0.442 0.441 0.442 0.442 0.442 0.441 0.442 0.442
-0.040 0.438 0.439 0.439 0.439 0.438 0.439 0.440 0.439 0.438 0.439 0.439
~0.060 0.399 0.400 0.402 0.400 0.398 0.400 0.401 0.400 0.400 0.400 0.399
-0.080 0.353 0.354 0.35%6 0.353 0.352 0.353 0.353 0.353 0.354 0.353 0.351
-0.100 0.312 0.313 0.314 0.313 0.312 0.313 0.311 0.313 0.315 0.313 0.310
-0.120 0.280 0.281 0.281° 0.280 0.281 0.280 0.278 0.280 0.283 0.280 0.278
-0.150 0.245 0.245 0.243 0.245 0.248 0.245 0.242 0.245 0.247 0.245 0.245
¢ Simulation parameters: Dy = Do oy = Dpeg,m =2 X% 10%/10vAe 13, Egpe= E°+0.200 V.
b ¥ _is the current function for a reversible process defined by Nicholson and Shain.®
Table 6 Simulated current functions for an irreversible cyclic voltammogram?®
i
£, (V)b luael/V 10° 107
NS Dy 1 10"
B 0.5 1 0.5 1
0.140 0.008 0.008 0.008 0.008 0.008
0.100 0.035 0.035 0.035 0.035 0.035
0.080 0.073 0.073 0.073 0.073 0.073
0.060 0.145 0.145 0.145 0.145 0.145
0.040 0.264 0.264 0.264 0.264 0.264
0.020 0.406 0.406 0.406 0.406 0.406
-0.0053 0.4958 0.4955 0.4962 0.4961 0.4955
-0.020 0.472 0.472 0.473 0.473 0.472

¢ Simulation parameters: Dy= Dy y= Dy qy=2% 10°/1vAt 13, Egq= E°+0.200 V, a=0.5, A=10*.
bE.=ol E - E°) + (RT/2F)In(na/(A?) (see Ref. [25]).
° ¥, =W/a? (see Ref. [25]).
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3. Reversible electrode process with an irreversible first-or-
der following up chemical reaction

In simulations of electrochemical systems coupled
with homogeneous reactions, it is important to consider
the possibility that a reaction layer, whose dimensions
will be considerably smaller than the diffusion layer may
be produced. This is indeed the case with an EC mecha-
nism. The thickness of the reaction layer, p, as
promised by Feldberg,® will be

H® = (Dox,M/ks)l/2 (21)
where k.= k) + k., and k_, is equal to zero for an irre-
versible chemical reaction.

For accurate computation a conservative constraint
requires that

p/Dx =5 (22)

With the empirically deduced relationship of Eq. (20)
one obtains

| vAt | < [10°/(25k,A8) 173 (23)

First-order rate constant for cyclic voltammetry is com-
monly normalized as:

kf = RTk/(F v ) (24)
Combining Eq. (23) and Eq. (24) gives:
| vAt | < {10°/[25(F/RT) k= 117 (25)

This weak dependence of [vAz| on kT* shows the simi-
larity of effectiveness of the SAGE method to the FQEFD
algorithm. If an EFD algorithm were used, IvAt| would
be strongly dependent upon the value of k7 (to the — 1
power) . Table 7 presents the simulated cyclic voltam-
metric current functions for a reversible electron transfer
followed by an irreversible first-order chemical reaction.
By appropriate transformation of the potential, it is then
valid to compare the simulated data (k[*>>1) with the
computations of Nicholson and Shain for an irreversible
electron transfer with o = 1.2 The agreement is excel-
lent. In addition, the computational instabilities didn’t

arise in the simulation process although the simulation
commenced from non-equilibrium initial concentrations.
In another word, there might be some initial instabili-
ties, but too small to be observed.

Table 7 Simulated cyclic voltammetric current functions for a re-
versible electron transfer followed by an imreversible first-
order chemical reaction®

Yoo
E. (V)¢ v, 8
0.5 1.0

0.140 0.008 0.008 0.008
0.100 0.035 0.035 0.035
0.080 0.073 0.072 0.073
0.060 0.145 0.145 0.145
0.040 0.264 0.263 0.264
0.020 0.406 0.405 0.405
-0.0053 0.4958 0.4966 0.4958
-0.020 0.472 0.474 0.472
-0.040 0.406 0.407 0.406
-0.070 0.323 0.323 0.325

@ Simulation parameters; A= o ; kf* = 1012; |vAzl = 1.007 x
10°V; Dy=Dy =Dy m=9.8x10% E = E°+0.7V,

YEp=E- E°- (RT/2F)[ - 1.56 + In(k*)] - 0.0053 V;
With the appropriate transformation of the potential, the current
function for an irreversible electron transfer.

¢ ¥, is theoretically identical to, ¥,,, the current function for a
reversible electron transfer followed by an irreversible first-order
chemical reaction with kf*>»1.

4. Reversible electrode process with an irreversible first-or-
der following up catalytic reaction

Using large Dy also becomes critical when the
catalytic mechanism in Table 8 is considered. Obvious-
ly, the model diffusion coefficient Dy must be chosen
carefully to achieve sufficient simulation accuracy.
Here, Eq.(25) can also be used with k{* replaced by
kZ . The simulated results for different 11/Ax are pre-
sented in Table 8. It can be seen that the simulations
gave accurate results when ;/Ax =35, which means that
accurate simulation of a first-order catalytic scheme also
needs at least five concentration points lying within the

[ . I
reaction layer” .°

5. Other aspects concerning the SAGE simulation method

The computation speed of the SAGE simulation is
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Table 8 Simulated voltammetric peak current functions ('¥,) for a reversible electron transfer followed by an irreversible first-order

catalytic chemical reaction”

\I,P
K = k/ (vF/RT) FIFD /A% luAe1/V Dy B

0.5 1.0

(10.000)
10 8.427 0.5 1.007 x 10° 0.98 6.400 7.156
9.986 5 3.184 x 10 31 9.941 9.965
10.001 50 1.007 x 10% 980 9.999 10.000

(10000)
108 8427 0.5 3.184 x 10° 3.1x 10t 6403 7159
9986 5 1.007 x 103 9.8x10° 9941 9965
10001 50 3.184 x 10° 3.1x 107 9999 10000

¢ Comparisons between the FIFD method and the SAGE method show the effectiveness of the SAGE method for simulation of such system
with very large homogeneous rate constant. Simulation parameters; Eygp= Eg+ 0.200 Vi Egpy ~ Egie, =0.500 V (peak currents in
parenthesis obtained by numerical integration as reported in Ref. [26])

comparable to the FQEFD method. However, its stabili-
ty and accuracy are better than that FQEFD method. As
known from Tables 2, 3, calculating the boundary con-
centrations Cg and C; by the fully implicit equations will
result in a faster convergence and a better simulation sta-
bility. We also extended this idea to the Nernstian sys-
tem, and found that the allowed potential increment was
almost twice that described by Eq. (20), which en-
hances the computation speed further at the price of solv-
ing more complicated six-variable algebra equations for
non-Nernstian systems. Therefore, this idea was not ex-
plored in any further detail. Another method of using the
GER and GEL equations simultaneously in an averaged
manner, just like that of the Larkin-4 procedure,? was
also tried for a voltammetric simulation of a Nemnstian
system with an expanded grid, and the results showed
strong oscillations when Dy >2.

Typical CPU time for the SAGE simulation of a
complete (forward and backward scans) cyclic voltam-
metric curve of an EC system on a 586 PC with a Pen-
tium 120-MHz processor is about 2.5 min with Dy =
10°, B=1 and the potential range of 500 mV. This time
decreases quickly with the decrease of Dy and becomes
less than 12 s when Dy = 10°. Since a PC with a CPU
clock frequency >1 GHz is the current state of the art,
thus the simulation could still be substantially accelerat-
ed if a faster CPU was employed. For explicit methods,
enhancing the computation speed can be realized via par-
allel programming based on parallel processors. Since

the digital simulation is facing the problem of consider-
ably long computation time and large memory usage in
simulations of rather complicated mechanisms, especially
in 2-D or 3-D space, the explicit methods may be supe-
rior to implicit ones in processing such cases due to high
parallelism of them. Following this idea, dividing simu-
lation space into small finite domains and employing
some stable and accurate equations on these separate do-
mains (analogous to SAGE method) may be promising in
dealing with these complex systems and is in need of be-
ing explored.

Conclusions

The SAGE method shows excellent stability and ac-
curacy for the simulations of electrochemical problems,
comparable with or even better than the FQEFD methods
in some aspects. On a PC-level computer, the computa-
tion does not need too long CPU time if the model diffu-
sion coefficient is not greater than 10°, which corre-
sponds to a dimensionless first-order homogeneous rate
constant of 10" which is enough for most of the electro-
chemical problems. Using faster or parallel CPU nroces-
sors could be effective in improving the comyutation
speed further. Application of SAGE to 2-D or 3-D prob-
lems is also worthy of being tried, because it is also an
unconditionally stable algorithm. Like the FQEFD
method, SAGE has great advantages on the EFD
method. In addition, this method also shows a similarity
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to the FIFD method" in the feasibility of using larger

value of the exponentially expanding factor (the maxi-
mum value of 3 = 1 can be used). Although the FIFD
algorithm performs well without the restriction of the po-

tential increment, its programming is certainly more

complicated .
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